An hp-Adaptive Discretization Algorithm for Signed Distance Field Generation

نویسندگان

  • Dan Koschier
  • Crispin Deul
  • Magnus Brand
  • Jan Bender
چکیده

In this paper we present an hp-adaptive algorithm to generate discrete higher-order polynomial Signed Distance Fields (SDFs) on axis-aligned hexahedral grids from manifold polygonal input meshes. Using an orthonormal polynomial basis, we efficiently fit the polynomials to the underlying signed distance function on each cell. The proposed error-driven construction algorithm is globally adaptive and iteratively refines the SDFs using either spatial subdivision ( h-refinement) following an octree scheme or by cell-wise adaption of the polynomial approximation's degree ( p-refinement). We further introduce a novel decision criterion based on an error-estimator in order to decide whether to apply p- or h-refinement. We demonstrate that our method is able to construct more accurate SDFs at significantly lower memory consumption compared to previous approaches. While the cell-wise polynomial approximation will result in highly accurate SDFs, it can not be guaranteed that the piecewise approximation is continuous over cell interfaces. Therefore, we propose an optimization-based post-processing step in order to weakly enforce continuity. Finally, we apply our generated SDFs as collision detector to the physically-based simulation of geometrically highly complex solid objects in order to demonstrate the practical relevance and applicability of our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical hp-adaptive signed distance fields

In this paper we propose a novel method to construct hierarchical hp-adaptive Signed Distance Fields (SDFs). We discretize the signed distance function of an input mesh using piecewise polynomials on an axis-aligned hexahedral grid. Besides spatial refinement based on octree subdivision to refine the cell size (h), we hierarchically increase each cell’s polynomial degree (p) in order to constru...

متن کامل

Adaptive Approximate Record Matching

Typographical data entry errors and incomplete documents, produce imperfect records in real world databases. These errors generate distinct records which belong to the same entity. The aim of Approximate Record Matching is to find multiple records which belong to an entity. In this paper, an algorithm for Approximate Record Matching is proposed that can be adapted automatically with input error...

متن کامل

Piecewise Linear Approximation of Signed Distance Fields

The signed distance field of a surface can effectively support many geometry processing tasks such as decimation, smoothing, and Boolean operations since it provides efficient access to distance (error) estimates. In this paper we present an algorithm to compute a piecewise linear, not necessarily continuous approximation of the signed distance field for a given object. Our approach is based on...

متن کامل

The hp-multigrid method applied to hp-adaptive refinement of triangular grids

Recently the hp version of the finite element method, in which adaptivity occurs in both the size, h, of the elements and in the order, p, of the approximating piecewise polynomials, has received increasing attention. It is desirable to combine this optimal order discretization method with an optimal order algebraic solution method, such as multigrid. An intriguing notion is to use the values o...

متن کامل

SSD: Smooth Signed Distance Surface Reconstruction

We introduce a new variational formulation for the problem of reconstructing a watertight surface defined by an implicit equation, from a finite set of oriented points; a problem which has attracted a lot of attention for more than two decades. As in the Poisson Surface Reconstruction approach, discretizations of the continuous formulation reduce to the solution of sparse linear systems of equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on visualization and computer graphics

دوره 23 10  شماره 

صفحات  -

تاریخ انتشار 2017